Searches for Supersymmetry at the Tevatron

Rencontres de Moriond, QCD March 2007

> Song Ming Wang Academia Sinica

On behalf of the CDF and DØ Collaborations

Outline

- •Brief introduction to SUSY
- •SUSY searches at Tevatron
- •Some selected analyses in final states:
 - •Multi-lepton
 - •Jets and Missing Transverse Energy
 - Photons
 - •Long-lived
- •Summary

Supersymmetry

- •A popular extension to the SM
 - •Unifies gauge couplings (if M_{SUSY} < few TeV)
 - •Incorporate gravity
 - •Solve the "fine-tuning" problem (if $M_{SUSY} \le \text{few TeV}$)
 - Provide a Dark Matter candidate
- •Postulate symmetry between boson and fermion particles
 - •Every SM particle has a SUSY partner with same quantum numbers except spin (differ by 1/2)

$$e,v,u,d,...(spin 1/2) \Rightarrow \widetilde{e},\widetilde{v},\widetilde{u},\widetilde{d},...(spin 0)$$

$$\gamma,W^{\pm},Z^{0},g,...(spin 1) \Rightarrow \widetilde{\chi}_{1,2,3,4}^{0},\widetilde{\chi}_{1,2}^{\pm},\widetilde{g} \quad (spin 1/2)$$

- •New quantum number : R-parity = $(-1)^{3B+L+2S}$
 - •Particles: R=1, SParticles: R=-1

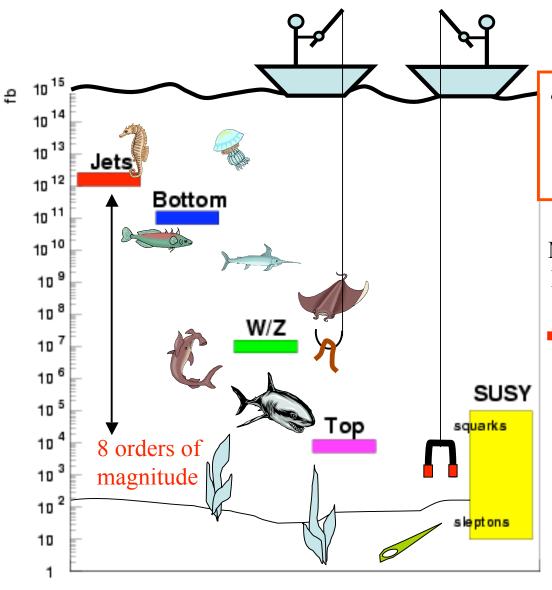
Phenomenology of SUSY

R-parity is conserved:

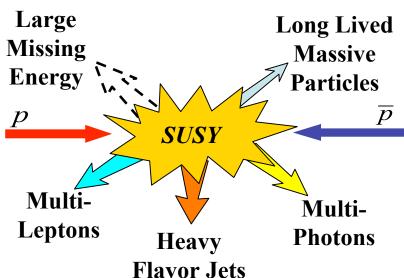
- •SUSY particles are pair produced
- •Lightest SUSY Particle (LSP) stable
 - If neutral \Rightarrow
 - escape detection ⇒ Missing Energy (MET) signature!
 - candidate for Cold Dark Matter!
- •SUSY is broken $(M_{SUSY} > M_{SM})$
- •Some SUSY breaking models

R-parity not conserved:

- •SUSY particle can be singly produced
- •LSP decays to SM particles, no dark matter candidate
- Process would violate either lepton or baryon quantum numbers


mSUGRA

- •SUSY mediated by gravity
- •LSP most likely is : $\widetilde{\chi}_1^0$
- $M_{\widetilde{\chi}_1^{\pm}} \approx M_{\widetilde{\chi}_2^0} \approx 2M_{\widetilde{\chi}_1^0}$


GMSB

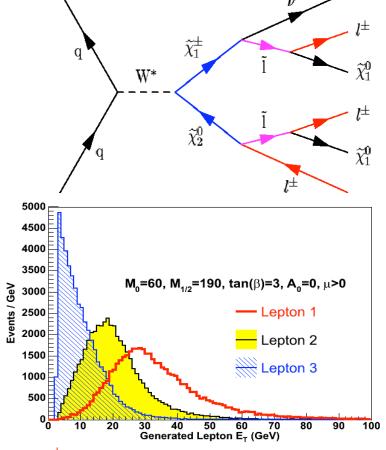
- •SUSY mediated by gauge fields
- •LSP : \widetilde{G}
- Phenomenology mostly determined by the NLSP (slepton or neutralino)

SUSY at the Tevatron

- •Predicted rates for SUSY are LOW!!!
- •Need to look for distinctive signature to distinguish from SM background

•Present results using data samples : 300 pb⁻¹ to 1 fb⁻¹

Searches for Chargino/Neutralino in


MET+Leptons

8

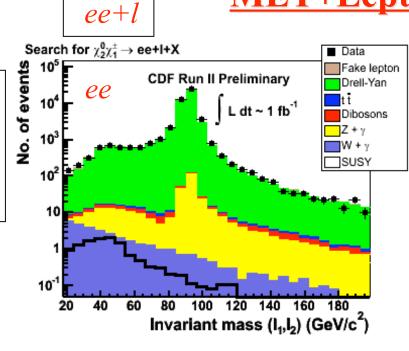
- Pair production of chargino/neutralino can produce <u>multi-lepton and MET in final state</u> (R-parity conservation)
- ⇒Very clean, "Gold Plated" signature, but :
 - •Low cross section (x BR)
 - Soft lepton
- ⇒Need large integrated luminosity
- ⇒Combine various final states

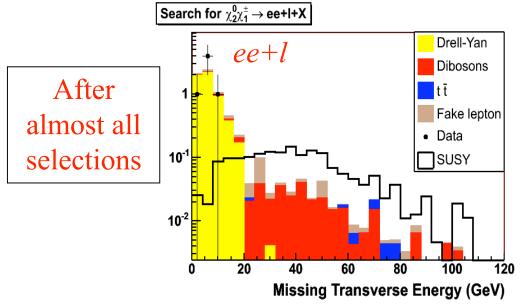
General search strategy (CDF and DØ):

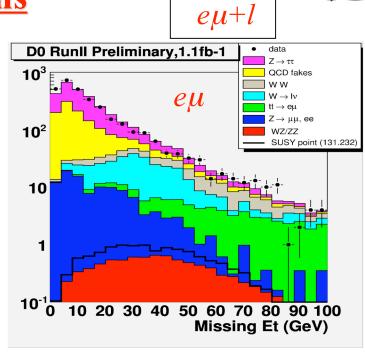
- •Two isolated leptons (e or μ)
- •Additional isolated lepton or track (for Tri-lepton ch.)
- •Require some MET
- •Veto events where M_{l+l-} in J/ψ , Υ , Z peaks

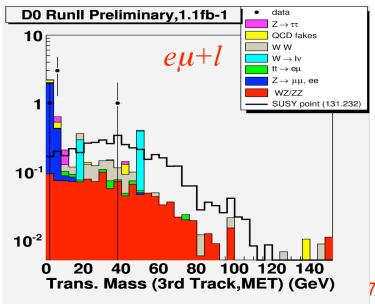
Main Background:

•DY, Di-bosons, jets faking leptons, conversions

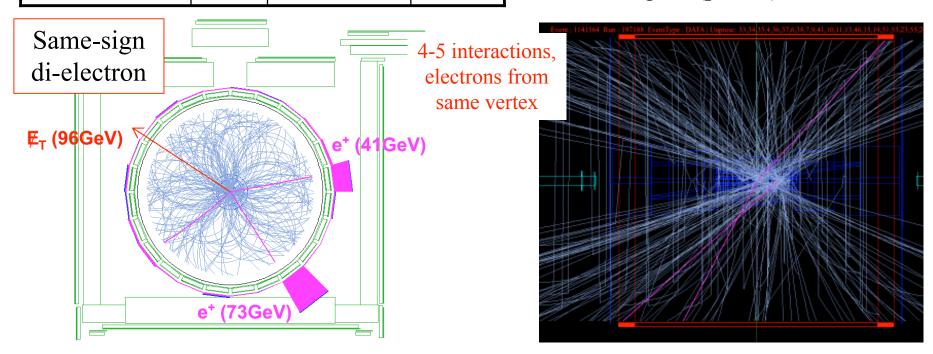



Searches for Chargino/Neutralino in


MET+Leptons



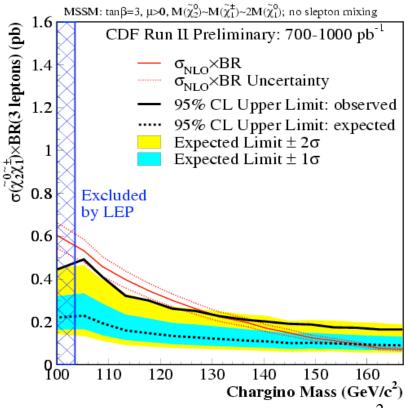
Preselection (req. 2 leptons)


Searches for Chargino/Neutralino in MET+Leptons

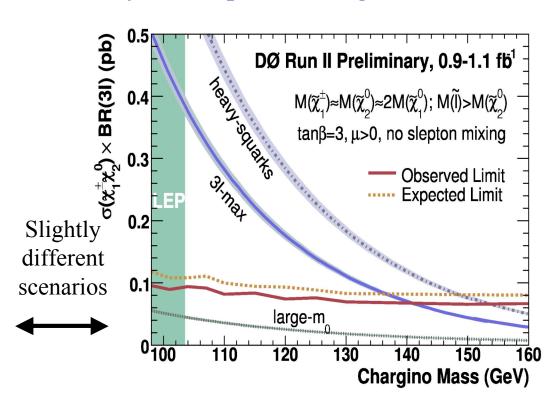
CDF	<i>L</i> (fb ⁻¹)	#Predicted Bkg	#Obs. Data
ee+l (lowpt)	1	0.97±0.28	3
μμ+Ι (low pt)	1	0.40±0.12	1
ell	1	0.75±0.36	0
μll	0.75	1.26±0.27	1
$e^{\pm}e^{\pm}, e^{\pm}\mu^{\pm}, \mu^{\pm}\mu^{\pm}$	1	7.8±1.1	13

DØ	<i>L</i> (fb ⁻¹)	#Predicted Bkg	#Obs. Data
ee+l	1.1	0.76±0.67	0
μμ+l	1.1	$0.32^{+0.73}$ -0.03	2
eμ+l	1.1	0.94+0.40 -0.13	0
μ±μ±	0.9	1.1±0.4	1

#SUSY signal (per ch) $\sim 0.2 - 3$ events



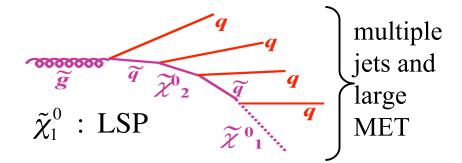
Searches for Chargino/Neutralino in MET+Leptons

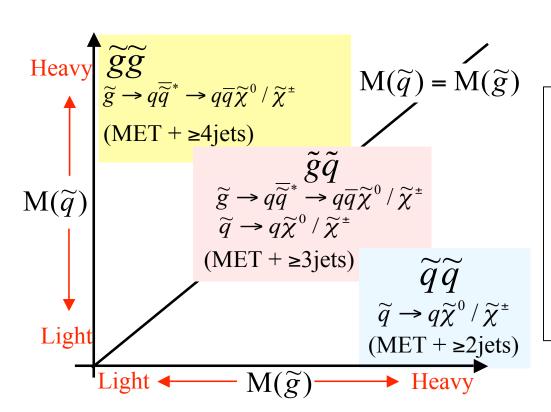


- •Results of various channels are combined
- •Present limits in mSUGRA like, low tanβ, no slepton mixing scenario

•Obs. limit : $M_{\tilde{\chi}_{1}^{\pm}} < 130 \text{ GeV/c}^{2}$

•Exp. limit : $M_{\tilde{\chi}_1^{\pm}} < 160 \text{ GeV/c}^2$


•31-max $(\mathbf{M}_{\tilde{l}} \ge \mathbf{M}_{\tilde{\chi}_2^0})$, lep. decay max. enhanced)

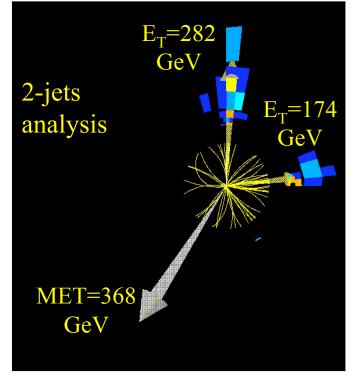

•Obs. limit : $M_{\tilde{\chi}_1^{\pm}} < 141 \text{ GeV/c}^2$

•Exceed LEP's limit in these scenarios

Searches for Squarks/Gluinos in MET+Jets

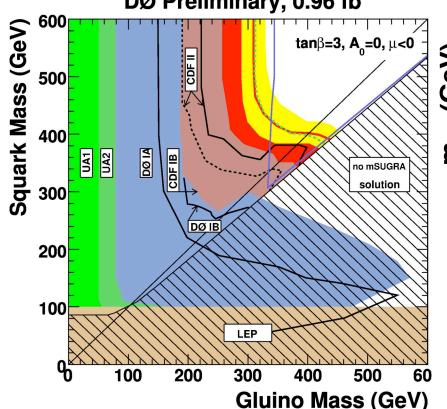
- \widetilde{q} , \widetilde{g} can be pair produced at Tevatron
- Decays of \tilde{q} , \tilde{g} may produce multiple jets and large MET (Rp conservation)

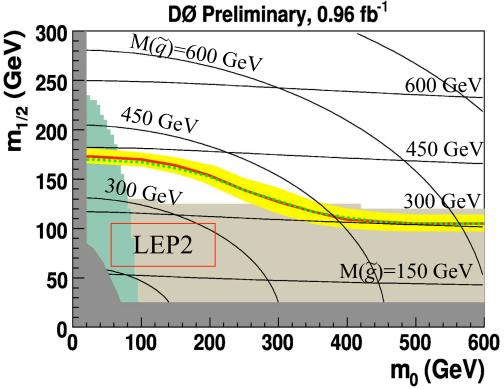
- •Main Background after clean-up
 - •QCD multi-jet (fake large MET)
 - • $Z(\rightarrow vv)$ +jets (irreducible)
 - •W(\rightarrow lv)+jets (missed lepton)
 - •Diboson, ttbar


Searches for Squarks/Gluinos in MET+Jets

- •DØ performs separate analyses for each final states (≥2,3,4 jets+MET), to obtain best optimized signal to background separation
- •Main selection cuts:
 - •Multi-jets + MET
 - •Separation of MET direction and jets
 - Lepton veto
 - •Large H_T + large MET

_	DØ Preliminary	
Events / 20	L=0.96 fb ⁻¹	
Г То То То То То То То То То То То То То		$Z \rightarrow \Gamma I + jets$ single-t Signal
10		4-jets analysis
1		-
10 ⁻¹	50 100 150 200 250 300 3	350 400 450 500
•	30 100 130 200 230 300 3	⊭ _τ (GeV)


	# obs	# expected
2-jets	5	7.5 ^{+1.7} _{-1.5}
3-jets	6	6.1+1.3 -1.2
4-jets	34	33.4+5.6 -5.0



Searches for Squarks/Gluinos in MET+Jets

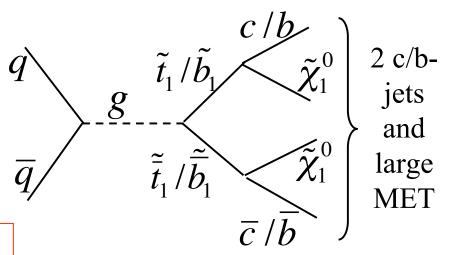
DØ Preliminary, 0.96 fb⁻¹

- •Determine limits in mSUGRA framework
- •Red curve: new 95% CL exclusion
- •Yellow band : effect from theory cross section uncertainties

$$M(\tilde{g}) > 289 \text{ GeV}; M(\tilde{q}) > 375 \text{ GeV}$$

 $M(\tilde{g}) > 402 \text{ GeV (when } M(\tilde{g}) \sim M(\tilde{q}))$

- •This analysis also constrain the mSUGRA parameters (m0: common scalar mass, m1/2: common fermion mass)
- •Extend limits beyond LEP
- •CDF 1fb⁻¹ results coming soon

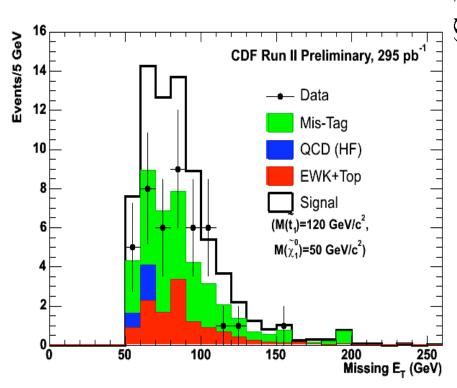

Search for Third Generation Squarks

- •Large mixing between the L- and R-handed weak eigenstates
 - •Stop: due to large top quark mass
 - •Sbottom: large mixing occurs at high tanβ
- one of the stop and sbottom quarks can be light

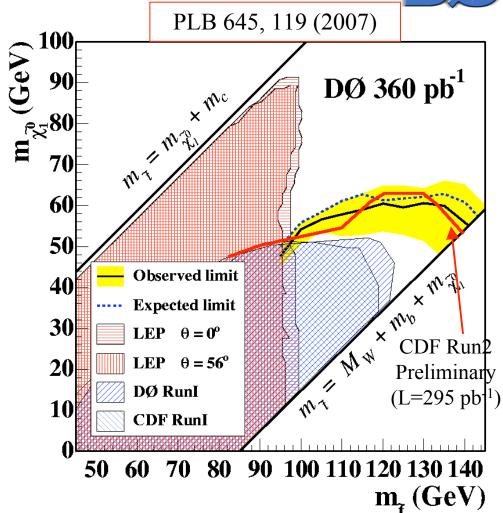
Search for Stop/Sbottom Quarks in MET+Jets

- •CDF, DØ searched for stop/sbottom quark pair production
- •Assume: BR($\tilde{t}_1 \rightarrow c\tilde{\chi}_1^0$) = 100% BR($\tilde{b}_1 \rightarrow b\tilde{\chi}_1^0$) = 100%

Main Selection:

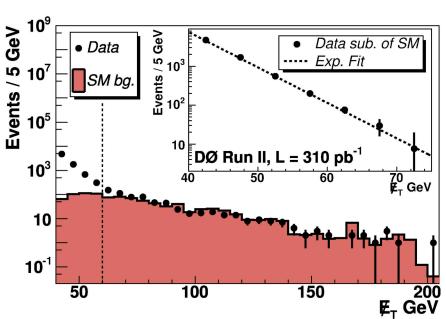

- •2,3 jets, with ≥1 jet tagged as c/b-jet
- •Large MET (>~50 GeV)
- Separation of MET direction and jets
- Lepton veto

- •Main Background
 - • $Z(\rightarrow vv)$ +jets, $W(\rightarrow lv)$ +jets
 - •Di-boson, ttbar
 - •QCD multi-jet

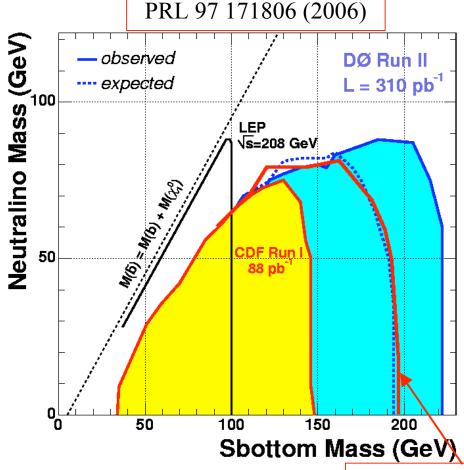


Search for Stop Quark

Good agreement between Data and SM prediction (after all selection cuts)



Both CDF and DØ exclude $M(\widetilde{t_1}) < \sim 140$ GeV, for $M(\widetilde{\chi_1}) = 55$ GeV at 95% CL

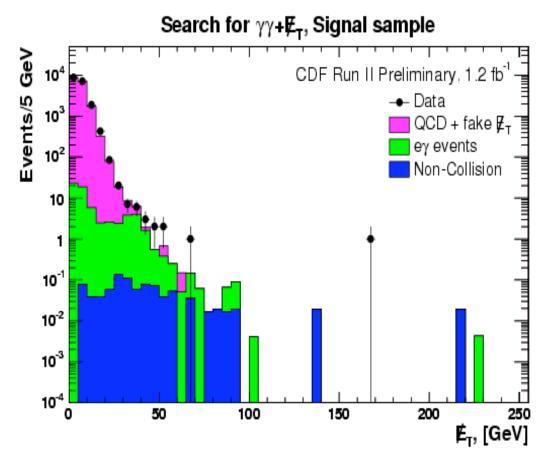


Search for Sbottom Quark

- •MET distr. after pre-selection cuts
- •Data well described by expected SM contributions (low MET dominated by QCD, not simulated)
- •After applying all cuts and b-tagging, found no excess in Data above SM prediction

Exclusion (@ 95% CL):

 $DØ: M(\widetilde{b_1}) \le 222 \text{ GeV}$

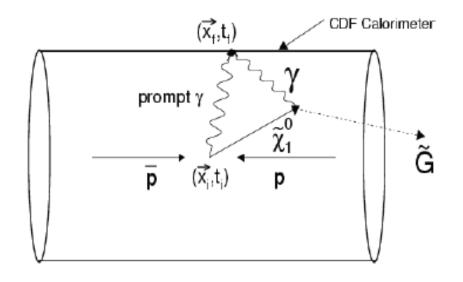

CDF : M(\widetilde{b}_1) < 195 GeV

CDF Run2 Preliminary (L=295 pb⁻¹)

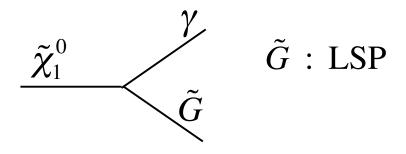
Search for SUSY in MET+Di-Photon

- •In GMSB, gravitino \tilde{G} is the LSP (escape undetected)
- •If $\widetilde{\chi}_1^0$ is NLSP, then $\widetilde{\chi}_1^0 \rightarrow \gamma + \widetilde{G}$

 \Rightarrow Thus in SUSY production under GMSB, final state will consist of $\gamma\gamma$ + Missing Et + X



- •CDF search for New Physics in γγ + Missing Et signature
- Signature base search, not optimized for any particular model
- •Require 2 central photons with E_T>13 GeV
- •Observe no excess at high MET
- •DØ previous search (760 pb⁻¹) observe no excess, set limit $M(\tilde{\chi}_1^{\pm}) > 220 \text{ GeV}$

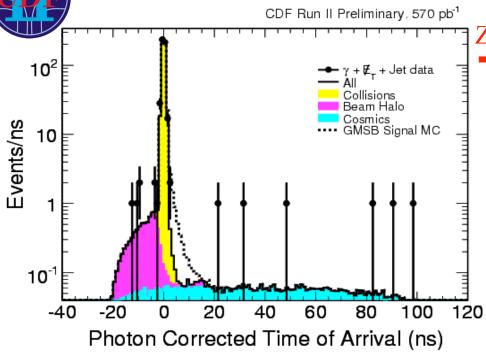

Search for SUSY in Delayed Photon Signature

•CDF search for heavy long lived particle decaying (inside detector) into photon •Focus on GMSB model where lifetime of $\tilde{\chi}_1^0$ (NLSP) is free parameter

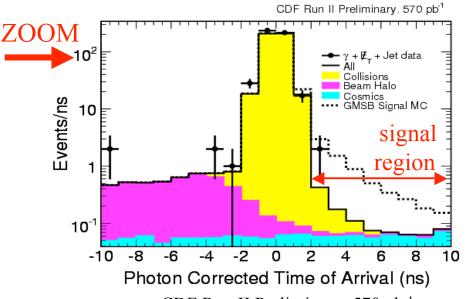
• $ilde{\chi}^0_1$ is long lived and decays into γ and $ilde{G}$

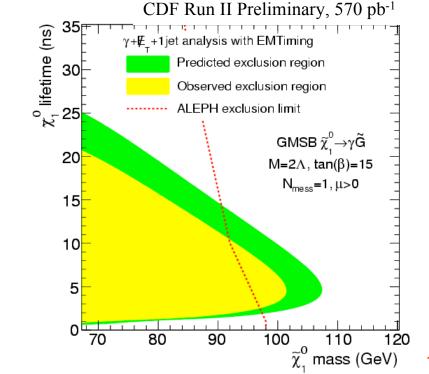
• γ from $\tilde{\chi}_1^0$ decay will arrive at face of detector with time delayed relative to promptly produced γ

• Select events with γ +MET+jet signature :

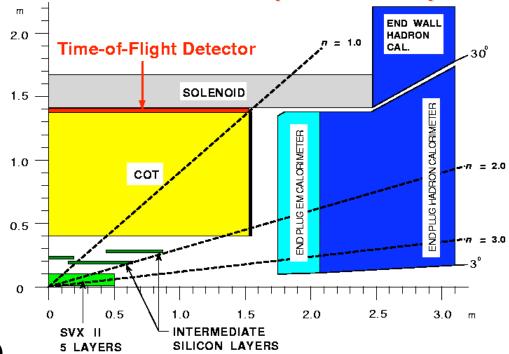

•Et(
$$\gamma$$
) > 40 GeV

•Et(jet)
$$> 35 \text{ GeV}$$

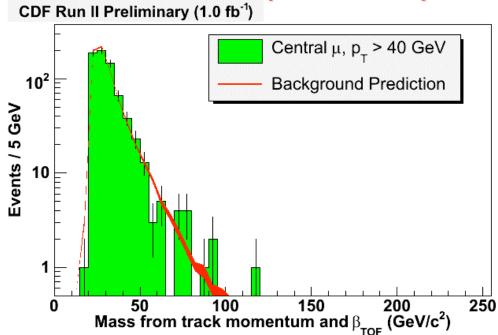

•MET
$$> 40 \text{ GeV}$$


• Arrival time of γ is measured by the timing system of the EM calorimeter

Search for SUSY in Delayed Photon Signature


- γ time corrected for TOF assuming coming from interaction point
- Signal window 2-10 ns
- Predict 1.3±0.7 BG events
- Observe 2 events
- Set exclusion in $M(\tilde{\chi}_1^0)$ and $\tilde{\chi}_1^0$ lifetime plane

Search for CHArge Massive Particles (CHAMPs)

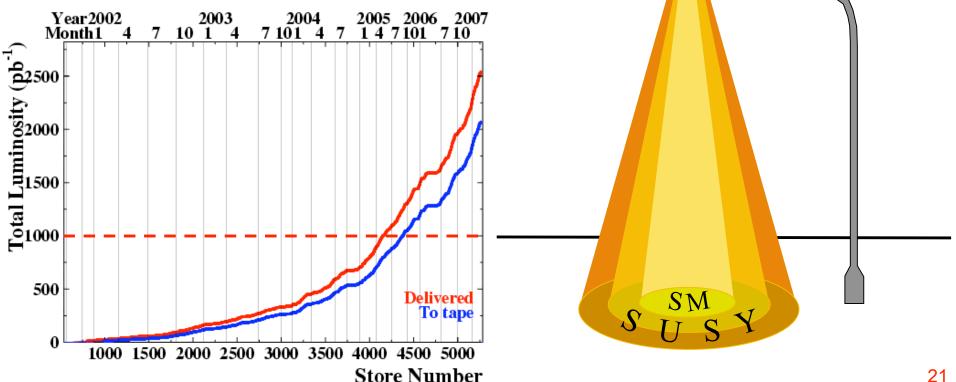

- CDF search for long lived particles:
 - Massive
 - Carry charge
 - Decay outside the detector
- These CHAMPs particles
 - Slow moving (long time of flight)
 - Very penetrating (like "slow muon")
- Look for "muon" like particle penetrate through calorimeter to the muon chambers
- Use Time-of-Flight (TOF) detector to measure β
- Use track momentum and β to calculate mass



- •Main background:
 - Cosmic
 - Instrumental effect:
 - Mis-measurement of interaction time and arrival time at TOF
 - Mis-measurement of momentum

Search for CHArge Massive Particles (CHAMPs)

- •No excess in data at high mass
 - •Nobs=1, Nexpect=1.5 (mass>100 GeV)



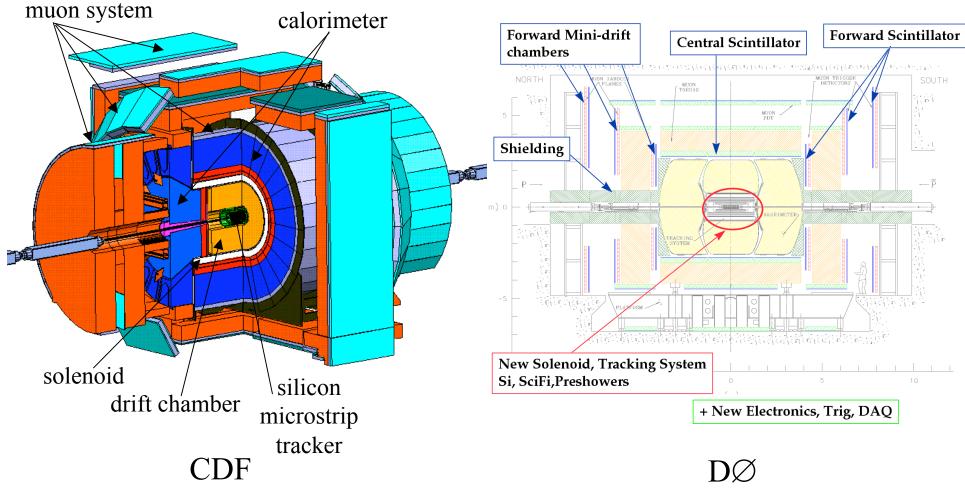
- •Interpret results in stable stop quark model (R. Barbieri, L.J. Hall, and Y. Nomura, PRD 63, 105007 (2001))
- •Exclude stable stop quark M(stop)<250 GeV at 95% CL

Summary

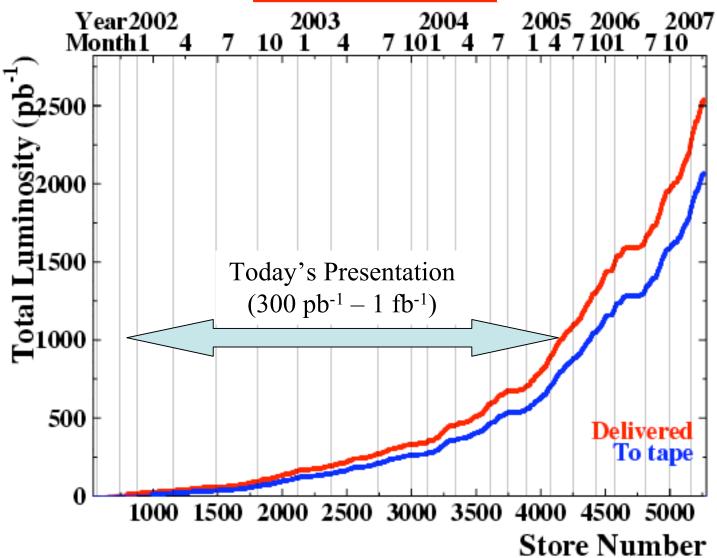
- •SUSY is a promising venue for New Physics
- •CDF and DØ are mounting extensive program to search for it and other physics Beyond the Standard Model
- Just finished analysing 1 fb-1 data, and still have much more in the bag

•New Physics/SUSY may be just hiding in the shadow now ... can be observed with brighter "light" !!!

Tevatron



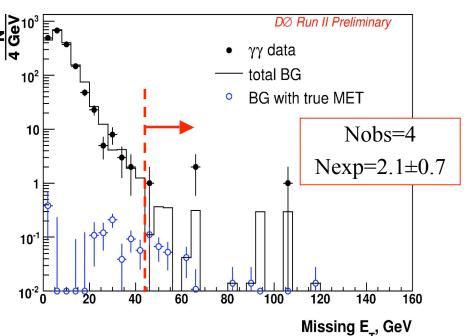
The Tevatron Experiments

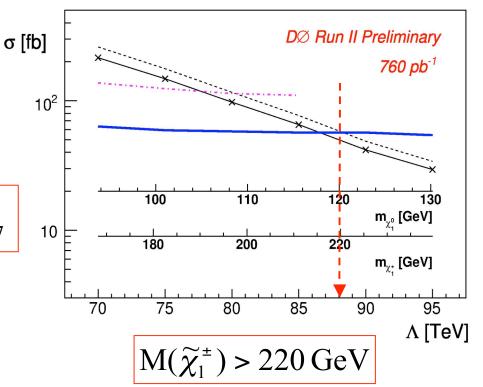

Multipurpose detectors:

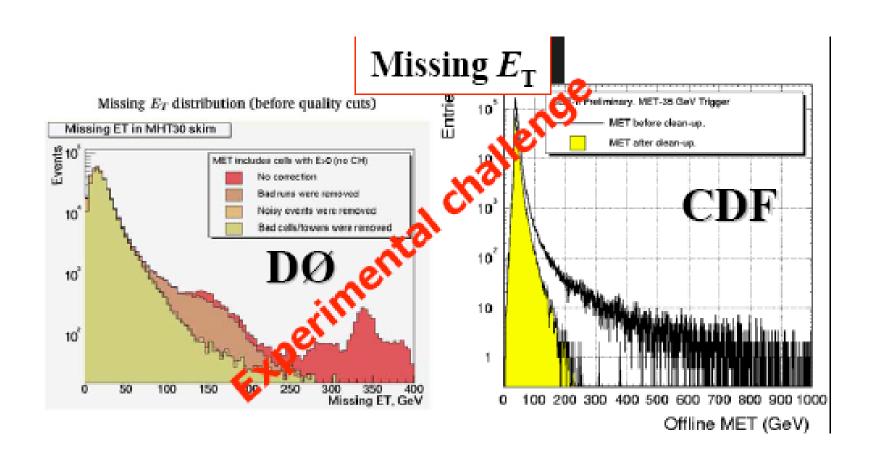
- •Electron, muon, tau identification
- •Jet and missing energy measurement

• Heavy-flavor tagging through displaced vertices and soft leptons

Tevatron Run2


- •Tevatron delivered total integrated lumi ~ 2.5 fb⁻¹
- •CDF/DØ collected $\sim 2 \text{ fb}^{-1} \text{ data}$


Search for SUSY in MET+Di-Photon


- •In GMSB, gravitino \tilde{G} is the LSP (escape undetected)
- •If $\widetilde{\chi}_1^0$ is NLSP, then $\widetilde{\chi}_1^0 \rightarrow \gamma + \widetilde{G}$
 - \Rightarrow Thus in SUSY production under GMSB, final state will consist of $\gamma\gamma$ + Missing Et + X
- •DØ searched for GMSB SUSY in γγ + Missing Et signature
 - •2 photons, Et> 25 GeV

Non-Collision MET Background

